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The crystallization of a new macromolecule is still very much a

trial-and-error process. As is well known, it requires the search

of a large parameter space of experimental settings to ®nd the

relatively few idiosyncratic conditions that lead to diffraction-

quality crystals. Crystallographers have developed a variety of

screens to help identify initial crystallization conditions,

including those based on systematic grids, incomplete factorial

and sparse-matrix approaches. These are somewhat subjec-

tively formulated based on accumulated data from past

crystallization experiments. Ideally, one would prefer as

objective a procedure as possible; however, that requires

objective methods that incorporate a broad source of crystal-

lization data. The Biological Macromolecular Crystallization

Database (BMCD), a repository of all published crystal-

lization conditions, is an obvious source of this data. This

database has been augmented with a hierarchical classi®cation

of the macromolecules contained in the BMCD as well as

extensive data on the additives used with them. A statistical

analysis of the augmented BMCD shows the existence of

signi®cant correlations between families of macromolecules

and the experimental conditions under which they crystallize.

This in turn leads to a Bayesian technique for determining the

probability of success of a set of experimental conditions

based on the data in the BMCD as well as facts about a

macromolecule known prior to crystallization. This has been

incorporated into software that enables users to rank

experimental conditions for new macromolecules generated

by a dense partial factorial design. Finally, an additional

advantage of the software described here is that it also

facilitates the accumulation of the data required for improving

the accuracy of estimation of the probabilities of success ±

knowledge of the conditions which lead to failure of crystal-

lization.
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1. Introduction

As is well known, successful crystallization is one of the major

rate-limiting steps in the determination of a macromolecular

structure by X-ray diffraction. During the course of crystal-

lization experiments, substantial data accumulate on the

conditions that lead to unsuccessful, partially successful and

(hopefully) successful crystallizations. A related problem is

coping with the increasing volume of reported results on

macromolecular crystallizations. How may these data be

exploited in the initial attempts to crystallize a hitherto

uncrystallized macromolecule?

The problem of formulating a rational method for macro-

molecular crystallization has led to many approaches,

including the well known incomplete factorial procedure of
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Carter & Carter (1979), who assumed that all points in the

parameter space of crystallization conditions are equally

probable. Jancarik & Kim (1991) employed a semi-automated

sparse-matrix sampling of published crystallization conditions

to de®ne a crystallization screen that has led to commercially

available kits (Hampton Research). Samudzi et al. (1992) used

simple statistical methods and cluster analysis to postulate

qualitative relationships among a subset of crystallization

parameters in version 1.0 of the BMCD, leading to a set of

suggested screening conditions speci®c to major classes of

macromolecules. In a previous report (Hennessy et al., 1994),

we applied machine-learning techniques to the BMCD in

order to discover potentially signi®cant new empirical rela-

tionships between experimental parameters.

Our approach to utilizing data in published reports of

successful crystallizations, such as that summarized in the

BMCD (Gilliland, 1987), is to derive probability distributions

that form the basis for optimizing search procedures for

crystallization conditions for a new macromolecule. One way

of stating this is to recall Perutz's famous quote

crystallization is a little like hunting, requiring knowledge of

your prey and a certain low cunning.

Here, the emphasis is on the common impression that patterns

of crystallization do exist. Using Perutz's analogy, we ask the

following questions. Are there good `hunting grounds'

wherein it is pro®table to concentrate one's efforts? Are there

poor ones that one should still examine, but not as intensively?

Do different classes of macromolecules have different

`favorite haunts' that can be exploited by a cunning crystal-

lographer? Can these haunts be identi®ed a priori?

This would not be necessary if one had unlimited resources,

one would simply try all possible conditions. In reality,

resources are always limiting and most initial screening

procedures are intended to approximately locate promising

conditions (and obtain solubility data). One concern is that the

most promising conditions could `fall between the cracks' of a

coarsely spaced initial screen. If one knew a priori that a

certain region of parameter space was more likely to yield

successful crystallizations than another, one could vary the

coarseness of an initial screen so as to concentrate on the more

favorable region.

Here, we report results that suggest that different classes of

macromolecules indeed show systematic biases in their

patterns of successful crystallization. However, before these

results could be established, we had to augment the data in the

BMCD. In doing so, we limited ourselves to information that

would be available before a molecule was crystallized, parti-

cularly emphasizing functional information from which

structural inferences might be drawn.

The incomplete factorial procedure originally pioneered by

Carter & Carter (1979) represents another approach to the

crystallization problem. Here too, one is caught between the

con¯icting demands of the coarseness of the search and the

limitations of available resources. One of the unstated

assumptions of the original incomplete factorial method is that

the macromolecule is equally likely to crystallize at each point

in the parameter space of experimental conditions. Here, we

report evidence that this is not correct. Even at the outset of a

de novo crystallization, one can infer from the class of

macromolecule to be crystallized that certain regions of the

parameter space of crystallization conditions are more likely

to lead to a successful crystallization than others. We also

describe software that calculates probabilities of success of

yielding a diffraction-quality crystal for any combination of

crystallization parameters using data retrieval from a modi®ed

version of the BMCD. The calculated probabilities are used to

bias the selection of data from an incomplete factorial design

such that the more probable combinations of experimental

conditions are sampled more densely than the less probable

ones.

One advantage of the Bayesian approach described here is

that it facilitates the development of more objective proce-

dures for the design of crystallization `screens'. Ideally, one

would prefer a totally objective procedure; however, that

would require a vast amount of data (essentially every crys-

tallization condition attempted on a broad set of macro-

molecules, the results of those attempts and considerable data

on the physical±chemical properties of the macromolecules).

In the absence of those data, Bayesian approaches can still

compute ratios of conditional probabilities of success of

certain combinations of experimental conditions over others,

if we provide them with some prior knowledge about the

macromolecules and about the relationships between the

different experimental parameters of crystallization. For

example, a Bayesian system can conclude from the BMCD

data and from prior knowledge about macromolecule families

that a `garden-variety' enzyme has a higher probability of

crystallizing at pH of 7.0 than at pH 11.0. As described below,

the prior knowledge must be encoded in terms of probabilistic

assumptions, which can then be modi®ed on the basis of

additional data and experience.

2. Methods

2.1. A macromolecular hierarchy

We have attempted to arrange macromolecules in a taxo-

nomic hiearchy in order to increase the signi®cance of

conclusions reached by the program. The motivation for a

hierarchical classi®cation was based on several premises. The

BMCD contains a variety of molecular types (proteins, DNA,

complexes etc.) with varying degrees of completeness. Many of

these types are not expected to crystallize similarly, e.g.

proteins and DNA. For others, it was unclear at the outset

whether or not there really are meaningful differences; for

example, whether or not the heme-containing proteins would

crystallize under the same distribution of conditions as

`garden-variety' enzymes. Indeed, one of the fundamental

questions we are asking is whether it is even possible to make

predictive statements about crystallization conditions knowing

only the incomplete information likely to be available at the

outset of a crystallization trial.



A closely related issue is the number of entries used to

de®ne the probabilities; here, one is caught between the

necessity of including enough entries to have a statistically

meaningful sample while not de®ning the system so broadly as

to include genuinely dissimilar groups. A hierarchical scheme

facilitates adjustment of the sample size. Lower groupings

within the hierarchy are more likely to be homogeneous, but

they are also smaller. One criterion in developing this hier-

archy was that it provide a variety of groupings of different

size and possible complexity.

Two important questions to be answered are the following.

(i) Can a hierarchical macromolecular classi®cation scheme be

found that demonstrates statistically meaningful differences in

the distribution of crystallization conditions for its members?

(ii) Can these differences be utilized to design crystallization

trials? The thrust of this report is to answer yes to both

questions. Two additional questions beyond the scope of this

paper are as follows. (iii) Is this speci®c classi®cation scheme

optimal? (iv) Can additional a priori information be incor-

porated? We strongly suspect that the answers to these

questions are no and yes, respectively; investigation of these

questions is central to our long-term research efforts.

We therefore freely admit that the classi®cation scheme

shown in Table 1 re¯ects our own `world view' of macro-

molecules. The goal was to achieve a scheme that met the

following criteria: (i) it should only use information expected

to be available at the outset of a crystallization trial and (ii) it

should be based on data that could form the basis of (crude)

structural inferences. It should provide classi®cation groups

that span a range of sizes from small and specialized to the

large and general.

For example, the DNA-binding proteins were segregated

because they are expected to have a non-random distribution

of electric charge over their surface in order to form stable

complexes with highly charged DNA. Similarly, we suspected

the structure of heme proteins is in¯uenced by the large

prosthetic group; does this also alter their crystallization

properties?

The smaller proteins and polypeptides illustrate additional

considerations. Here, the proteolytic `fragments' (P.S.F) were

segregated from the `little' peptides (P.S.L). Size was one

consideration in this segregation because the former group

consisted of one or more entire domains and were generally

larger than the latter those in P.S.L. Size, however, was not the

only factor because proteolysis raises the issue of residual

protease which could impact on the choice of crystallization

conditions. In any event, the software described below allows

for the use of multiple categories, i.e. the user could combine

P.S.F with P.S.L if he/she so chose.

2.2. Restructuring of the BMCD data

To facilitate analysis of the BMCD database, one must

convert it to a form more easily amenable to the statistical

analysis, machine-learning and the probabilistic screen-design

programs. The original BMCD data tables were imported into

Microsoft Access using its available import capabilities, which

allowed the use of SQL1 queries to augment, partition and

analyze the data. Furthermore, this provided a consistent

platform by which the Probabilistic Screen Design program

could access the data using existing well established tech-

nology (i.e. Microsoft's ODBC2 tools).

Experimentation and analysis of the data in this format

highlighted incompleteness in the data and the need for

reengineering including data re-representation, attribute

abstraction, data labeling and data subsetting, as explained

below. Many of the ®elds in the BMCD required re-repre-

senting or normalization. Symbolic ®elds (e.g. additives or

crystallization methods) used multiple terms for the same

concept; numeric ®elds used multiple scales for a single

feature. Some attributes represented very complex features
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Table 1
Macromolecular hierarchy.

P Proteins
P.S Soluble proteins

P.S.E Enzymes
P.S.B Small ligand-binding proteins
P.S.C Chaperonins
P.S.H `Heme' proteins (including chlorophyll)
P.S.F Proteolytic fragments
P.S.I IgGs and other (soluble) immune proteins
P.S.L Little proteins and peptides

P.S.L.TI Toxin/inhibitor
P.S.L.Pep Short peptides, synthetic or natural
P.S.L.Hor Hormones
P.S.L.O Other little proteins

P.S.St `Structural' proteins
P.S.St.E Eukaryotic structural (e.g. actin)
P.S.St.P Prokaryotic structural proteins
P.S.St.V Capsids and other viral components

P.DNA Proteins that interact with DNA
P.DNA.NS non-speci®cally

P.DNA.NS.O Proteins that bind DNA
P.DNA.NS.E Enzymes that work on DNA

P.DNA.S sequence-speci®cally
P.DNA.S.RM Restriction/modi®cation enzymes, resolvases,

integrases etc.
P.DNA.S.AR Gene activators/repressors

P.RNA Proteins that interact with RNA
P.RNA.RNP Proteins from ribonucleoproteins
P.RNA.E Ribonucleases
P.RNA.T tRNA synthetases

P.M Membrane proteins
N Nucleic acids

N.Z Ribozymes
N.T tRNAs
N.O._.n Oligonucleotides of length n (e.g. N.O.D.8 is a

DNA octamer)
N.O.D.n Deoxy (DNA) oligonucleotides of length n
N.O.R.n (RNA) Oligonucleotides of length n
N.O.H.n Hybrid (DNA±RNA) oligonucleotides of length n

CPP Protein±protein complex
CDP Protein±DNA complex
CRP Protein±RNA complex

CRP.S `Simple' complexes, e.g. tRNA-synthetase
CRP.L `Large' complexes, e.g. ribosomes

CDD Drug±DNA complex
V Viruses
S Sugars and polysaccharides

1 Structured Query Language, an ANSI standard language for manipulating
and extracting data in databases.
2 Open Database Connectivity, a Microsoft standard for interacting with a
wide variety of databases.



research papers

820 Hennessy et al. � Crystallization screening procedures Acta Cryst. (2000). D56, 817±827

that were more readily useable as a set of attributes. One

example of this attribute expansion was the development of a

table relating each of the additives to a set of properties

including its perceived role, the number and types of species

that comprise the additive and the polymerization state,

charge, titrateable type and chemical classi®cation of each

species. Furthermore, missing values were handled incon-

sistently and sometimes overlapped values representing valid

entries. The process of re-representing the data to correct for

this was important in creating a consistent set of data that

would provide maximum utility to later analysis procedures.

Attribute abstraction is the generalization of feature values

into hierarchies. Examples of the hierarchies that were

developed or exploited include a macromolecular hierarchy

(Table 1), a hierarchy of the chemical additives using subsets

of the expanded attribute described above and a hierarchy of

the space groups. These hierarchies increase the power and

¯exibility of our analysis by allowing dynamic repartitioning of

the data in terms of what is thought to be relevant to the

problem at hand; e.g. restricting the analysis to immuno-

globulin-like proteins when one is attempting to crystallize

one.

Data labeling, i.e. the identi®cation of positive and negative

instances in the data set, was used to analyze the nature of the

BMCD data. As mentioned earlier, the BMCD contains only

positive instances (i.e. successful crystallization results), while

most of the machine-learning and statistical analysis proce-

dures bene®t from having both positive and negative instances

to generate results. The diffraction limit was used to de®ne a

sliding scale of `success' (high resolution) and `failure' (poor

resolution). Thresholds between 2.5 and 3.5 AÊ were used

during various portions of the analysis.

Data subsetting is the selection of portions of the data to

reduce the amount of irrelevant or noisy data. This can be of

two forms: subsetting of the attributes and subsetting of the

database entries. Selection of subsets of the attributes have

been used to prune irrelevant or incomplete portions of the

BMCD, including attributes which have reported values for

fewer than 40% of the entries in the database. (Many BMCD

entries are very incomplete, re¯ecting the original literature

on which it is based; i.e. in many cases, the actual description of

the crystallization conditions lacks many critical variables.)

Selection of subsets of the database entries provides more

specialized relationships from the data. For instance, the

Probabilistic Screen Design program focuses the analysis of

the probability of success to a speci®c user-de®ned subset of

the classes of macromolecules, as de®ned by the macro-

molecular hierarchy described earlier.

2.3. Statistical analysis of the BMCD

Statistical analysis of the re-engineered data was performed

using a two-sample Student's t-test to compare the means of

the numeric attributes (pH, temperature and macromolecular

concentrations) between the different macromolecular classes.

The null hypothesis is that the two samples are drawn from the

same distribution of values for the attributes. A `failure' of the

t test therefore implies that the samples were drawn from two

different populations; i.e. the means are signi®cantly different.

The t-test statistic is computed as

t � �x1 ÿ x2�=��s2
1=n1� � �s2

2=n2��1=2; �1�

where xi is the sample mean, si/n
1=2
i is the standard error and ni

is the sample size. The Student's t test is relatively robust

against non-normal populations, especially for larger sample

sizes (i.e. n > 15 given no strong skewness or outliers in the

data).

2.4. Probabilistic Screen Design ± rationale

The minimum number of experiments in a standard

incomplete factorial design includes one representative for

every pairwise combination of parameter values. Current

algorithms can generate more than the minimum number of

experiments, i.e. more than one representation of every

combination. However, they work in an uninformed mode,

treating all combinations of parameters as equally likely to

produce a successful crystallization. As demonstrated below,

all combinations of parameters are not equally likely to

succeed. Previous experience can guide the design of the

screen to emphasize combinations of parameters with higher

likelihoods of success.

A related issue has to do with the coarseness of the

sampling. For example, while some proteins crystallize over a

broad range of pH, others only crystallize within a very narrow

range and promising conditions could fall `between the cracks'

of a sparsely sampled screen. Whenever resources are limited,

they impose constraints on the total number of samples to be

tested and hence on the `average' coarseness of any sampling.

Our approach is to vary the coarseness of the sampling

according to the estimated probability of success, concen-

trating more closely in the high-probability regions while

thinning out those intrinsically less likely to succeed. The

degree of variation is under user control and can be easily

tuned to the speci®c problem at hand.

The rationale behind our approach is therefore an exten-

sion and combination of the partial factorial (Carter & Carter,

1979) and sparse-matrix (Jancarik & Kim, 1991) approaches.

The combinations of conditions in these approaches are based

on previous experience (including statistical analysis of

previous versions of the BMCD) and anecdotal evidence.

However, their relatively ad hoc combination of information

has resulted in decreased performance, as described below. It

also contains a signi®cant subjective component, with all the

incumbent risks. In contrast, our approach concentrates much

more heavily on analyzing and applying the data in the BMCD

as directly and objectively as possible.

2.5. Probabilistic Screen Design ± probability computation

The data in the BMCD are used to provide an indication of

how frequently a combination of speci®c conditions has

produced successful crystallizations in the past. This frequency

of occurrence can then be used to compute a relative prob-



ability of success when comparing one set of experimental

conditions with another.

The computation of the probability of success is not quite as

simple as counting the frequency of occurrence in the data-

base of the given conditions. The BMCD includes many

reports of crystals that only diffract to low resolution, e.g. 7 AÊ .

Additionally, some types of crystallographic studies require

higher resolution than others. For the studies reported here,

we adopted an adjustable `threshold', e.g. 2.5 AÊ , as the

minimum required for a `successful' crystallization. We also

assume that the values reported in the BMCD are the most

successful combination tested for the macromolecule in

question, i.e. other unreported values probably yielded crys-

tals that did not diffract as well.

The mathematical formula for the probability that a

diffraction limit is under some threshold (or standard of

success) given a set of parameters3 is

P�DjpH;B;T; S; SC;PPT;PC;MCN;MCL� �
�P�D; pH;B;T; S; SC;PPT;PC;MCN;MCL��=
�P�D; pH;B;T; S; SC;PPT;PC;MCN;MCL�
� P�D; pH;B;T; S; SC;PPT;PC;MCN;MCL��: �2�

Here, P�DjpH;B;T; S; SC;PPT;PC;MCN;MCL� represents

the probability that the diffraction limit is under the threshold

given speci®ed values for the crystallization variables pH,

B (buffer), etc. Similarly, P�D; pH, B, T, S, SC, PPT, PC, MCN,

MCL) is the probability that the diffraction limit is over the

threshold.

If we cannot assume any form of independence among the

variables, then the only way to evaluate the joint probabilities

in (2) is to search the database for the frequency of that exact

combination of parameter values. If the database was very

large, evenly spanned the full range of conditions and included

failure information as well as successes, this technique would

do ®ne. Unfortunately, the BMCD does not ®t these criteria.

However, this search for an exact combination of parameter

values would only be necessary if we were to assume strong

interdependence among all of the experimental parameters.

As our experience and statistical analysis (see x3.1) both

suggest this strong interdependence is not likely, it is reason-

able to relax this requirement and allow independence

between conditions to be explicitly modeled. This allows us to

search for subsets of conditions (something the database can

support) and combine them according to the rules of prob-

ability. Stated in other terms, the crystallization problem itself

would probably be intractable if there were total inter-

dependency of the terms (only one exact combination

worked). The observation that multiple combinations give at

least partial success is the basis of most crystallization efforts;

we are exploiting that here by multiplying the probability

functions.

Our model of the parameters and their dependencies is

shown in Fig. 1. The advantage of this model becomes

apparent in its impact on calculating the joint probabilities in

(2). Using the network of dependencies described in Fig. 1, the

axioms of probability and Bayes' theorem, the joint prob-

ability in the numerator of (2) can be computed as

P�DjpH;B;T; S; SC;PPT; PC;MCN;MCL� �
P�D� � P�MCLjD� � P�TjD;MCL� � P�pHjD;MCL;T�
� P�BjD;MCL;T; pH� � P�SjD;B;MCL;T�
� P�SCjD; S;MCL;T� � P�PPTjD; S;MCL;T�
� P�PCjD;MCL;PPT;T� � P�MCNjD;B;MCL;T�: �3�

The conditional probabilities in (3) can be estimated directly

from frequencies in the BCMD. For example, P(pH =

7.0|D < threshold, MCL = enzyme, T = 277 K) is the prob-

ability that the pH is 7.0 given the diffraction limit is less than

the threshold, the macromolecular class is `enzyme' and the

temperature is 277 K. To compute this probability, the number

of experiments in the database with a diffraction limit less than

the threshold, a macromolecule of the type `enzyme' and a

temperature of 277 K is counted. The number of experiments

in a subset of the previous set having a pH of 7.0 is also

counted. Dividing the count of the subset by the count of the

original set provides the necessary relative frequency and

estimate of the conditional probability, shown in (4).

Repeating this process for all of the conditional probabilities

in (3) and multiplying them results in the computation of the

desired joint probability,

P�pH � 7:0jD< threshold;MCL � enzyme;T � 277 K�
� �No: of exps with pH � 7:0;D< threshold;

MCL � enzyme;T � 277 K�=�No: of exps with

D< threshold;MCL � enzyme;T � 277 K�: �4�
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Figure 1
Crystallization parameter dependency graph. The graph represents the
parameters included in the calculation of the estimated probability of
success and their dependencies. A connecting arc from pH to buffer
indicates that the probability distribution for the buffer may depend on
the value of the pH. The lack of a connecting arc between two parameters
re¯ects conditional independence (the probability distribution for a
parameter is independent of the value of the other parameter).

3 Parameter legend: D, diffraction limit; B, buffer; T, temperature; SC, salt
concentration; PPT, precipitant agent; PC, PPT concentration; MCN,
macromolecule concentration; MCL, macromolecule class.
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Note that these probabilities are dynamic ± as additional data

is added to the database these conditional probabilities can be

updated.

This joint probability in (3) is repeated in (2) as the ®rst

operand in the denominator. The second operand in the

denominator has an analogous form to (3).

P�D;pH;B;T; S; SC;PPT;PC;MCN;MCL� �
P�D� � P�MCLjD� � P�TjD;MCL� � P�pHjD;MCL;T�
� P�BjD;MCL;T; pH� � P�SjD;B;MCL;T�
� P�SCjD; S;MCL;T� � P�PPTjD; S;MCL;T�
� P�PCjD;MCL;PPT;T� � P�MCNjD;B;MCL;T�: �5�

(5) is problematic in that it requires frequencies for failures of

crystallization experiments. This information is not available

in the BMCD. Over time, we hope to augment the BMCD with

data from additional experimentation that will provide some

of this failure data. Until then, we have estimated these by

assuming that the shape of the probability distribution for

failure is complementary to the shape of the probability

distribution for successful crystallizations. For most of the

parameters, this seems to be a reasonable assumption.

Therefore, extracting the

conditional probabilities in (3)

from the BMCD and applying

the assumptions and prior

probabilities to determine the

conditional probabilities for (5),

the necessary joint probability

distributions can be calculated

and substituted into (2). The

result is the probability of

success given a speci®c set of

parameter values based on the

data in the BMCD.

Using (2) through (5), a

probability of success can be

computed for each of the sets of

parameters produced by an

algorithm that generates crys-

tallization conditions, such as

the Carter & Carter algorithm

(Carter & Carter, 1979). Note

that although we used the

Carter & Carter algorithm in

this implementation, there is

nothing inherent in our prob-

ability calculations that would

limit them to this method for

generating the initial conditions

to be tested. The probability can

be used as the basis for a scoring

mechanism to bias the selection

of experiments that are actually

carried out. The result is a

screen design, dynamically

created based on the most

current information, where previous successes indicate the

greatest likelihood of future success.

2.6. Probabilistic Screen Design ± program description

The biased incomplete factorial design algorithm described

above has been implemented for Microsoft Windows

environments.4

Once invoked, the program displays help boxes which walk

the new user through the setup and execution procedures.

Information is gathered from the user describing the set of

parameters around which the crystallization screens will be

designed. Input typically includes information about the ®xed

experimental conditions, such as the class of macromolecule,

the parameters to be manipulated with the values they will

assume and the number of trials. Fig. 2 shows the user inter-

face for the screen-design program.

For the initial version of this program, the set of parameters

that de®nes the crystallization trials is ®xed to include pH,

temperature, macromolecular concentration, buffer, two

Figure 2
Screen design user interface: a screen dump of the user interface for the Probabilistic Screen Design program.
The ten large list boxes in the middle of the window are where the values for the crystallization parameters
are entered. The two large lists at the bottom of the window display the list of values and their frequencies in
the database for a selected parameter. The edit boxes at the top and right side of the window allow for
further customization of the screen design. Legend: Temp = temperature, PPT = precipitating agent, Macmol
Concen = macromolecule concentration.

4 A Java version is currently under development with a direct connection to a
database derived from the BMCD.



additives (one of which is

generally a salt) and precipi-

tating agent. A listing of poten-

tial values for the parameters

and the extent to which they are

represented in the database is

provided at the bottom of the

window (see Fig. 2). The para-

meter values support the use of

wildcards (`*' and `?') for

matching partially speci®ed

names in the database. This is

useful, for instance, when the

user is interested in the impact

of using a `phosphate' buffer

regardless of the anion. Binning

ranges are supported for the

numeric values to aid in

matching numeric values against

a database. The binning range

speci®ces how strict a numeric

match is required. For instance,

a binning range of �0.2 for the

pH allows 7.5 to match any value

between 7.3 and 7.7 inclusive.

Given these parameter values,

the program selects a set of trials

that best covers the space of

possible combinations of these

crystallization parameters. The

user speci®es the number of

desired trials, which are gener-

ated by the standard Carter &

Carter algorithm. For each of

the generated trials, the neces-

sary frequencies are extracted

from the database and the

probability of success is

computed as described above.

The list of experiments,

including parameter values, rank

order and computed probability

of success, is presented to the

user for selection and grouping

into trays.

2.7. Crystallization Notebook ±
program description

During the course of crystal-

lization experiments, substantial

data accumulate on the condi-

tions that lead to unsuccessful,

partially successful and (hope-

fully) successful crystallizations.

One of the goals of this project is

to provide for the unobtrusive
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Table 2
A systematic correlation between the protein family and the temperature distribution (lower left) and the
pH (upper right).

This table reports the values of the Student t test, as applied to the indicated pair of variables. The value, quoted as a
percentage, represents the probability that the two individual distributions were in fact drawn from the same parent
distribution. For example, the value of 0.02% in the P.S.E±P.S.B comparison (upper right) means that the probability
that both pH distributions were drawn from the same parent distribution is only 2� 10ÿ4, which is highly signi®cant.
The quantity in parentheses is the value of the t function itself.

P.S.E P.S.B P.S.I P.S.H P.S.St P.S.L P.M P.DNA P.RNA

P.S.E 0.02 Ð 8.1 Ð Ð 9.5 5.6 Ð
(3.81) (ÿ1.74) (ÿ1.73) (ÿ1.94)

P.S.B Ð 6.8 0.01 Ð 4.6 0.4 0.01 Ð
(ÿ1.83) (ÿ4.85) (ÿ2.00) (ÿ3.08) (ÿ3.95)

P.S.I 0.14 Ð 8.6 Ð Ð 5.69 3.5 Ð
(ÿ3.32) (ÿ1.73) (ÿ1.97) (ÿ2.14)

P.S.H 0.96 Ð Ð 9.3 Ð Ð Ð 6.2
(ÿ2.61) (1.72) (1.88)

P.S.St Ð Ð 9.1 Ð Ð 3.6 3.6 Ð
(1.72) (ÿ2.15) (ÿ2.14)

P.S.L 4.1 Ð Ð Ð Ð 9.5 8.8 Ð
(ÿ2.06) (ÿ1.70) (ÿ1.72)

P.M 0.01 0.02 4.2 0.02 0.01 1.5 Ð 4.5
(ÿ6.84) (ÿ4.03) (ÿ2.07) (ÿ4.02) (ÿ3.39) (ÿ2.46) (2.00)

P.DNA Ð Ð Ð Ð Ð Ð 0.70 2.5
(2.78) (2.20)

P.RNA Ð Ð Ð Ð Ð Ð 0.01 Ð
(3.60)

Figure 3
Crystallization Notebook user interface: a screen dump of the user interface for the Crystallization Notebook
program. The 24 boxes in the middle of the window represent the 24 `wells' of a typical crystallization
experiment. Solutions for each well along with the list of results are displayed in each box. User-customized
colorization supports a `phase-diagram' display of results. Menus support ¯exible entry of recipe/
concentration data, mass editing, user-de®ned `default' tray setups, a Grid Screen wizard and printed output
for inclusion in experiment notebooks.
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recording and archiving of crystallization experiments,

including the incorporation of tools for performing chemical

and related calculations. Toward this end, the Crystallization

Notebook database software package has been developed for

Microsoft Windows environments.

Included in the Crystallization Notebook experiment-

recording package is a completely integrated graphical user

interface for data recording (see Fig. 3). Solutions for each

well are displayed in the format of an entire tray for easy

readability. Additionally, the software supports user custom-

ized and colorized `phase-diagram' display of results, ¯exible

recipe/concentration data, the ability to select and mass edit

any subset of the wells of a tray, user-de®ned `default' tray

setups, the ability to `derive' a tray from a cell capturing the

natural ¯ow of experiment, a Grid-Screen wizard to provide

quick grid-screen generation and entry, the ability to compute

concentration data from recipe and the recipe from concen-

tration, and printed output for inclusion in experiment note-

book.

Both software packages are available for distribution; users

may register and download the software from http://

www.xtal.pitt.edu.

3. Results and discussion

3.1. Statistical analysis of the BMCD

Version 2.0 of the BMCD consists of 2353 successful crys-

tallization conditions for over 1557 macromolecules such as

proteins, nucleic acids, polysaccharides and viruses (Gilliland,

1987). As many as 53 parameters are reported per crystal-

lization entry, including pH, temperature, method, macro-

molecular concentration and chemical additives to the growth

medium, e.g. precipitating agents, buffers and salts. Descrip-

tive information includes the `common' macromolecular

name, the E.C. classi®cation and the source, e.g. organism and/

or tissue where appropriate. Crystallization results are

reported: unit cell/space group, crystal size and shape, X-ray

diffraction limit and crystal-growth time.

We expect that most practicing protein crystallographers

would agree that the successful crystallographers exploit

patterns of crystallization. However, there has been little

statistical data to provide objective support for this belief. We

therefore applied Student's t test to the BMCD, as described in

x2. Speci®cally, we addressed the question: are there mean-

ingful differences between the macromolecular classes in their

distributions of temperature, pH etc. as reported in the

BMCD? The results shown in Table 2 show that this is the

case. Here, we show the value of the t statistic together with

the probability that that value occurred by chance. Prob-

abilities under 1% are generally considered signi®cant and

those under 0.1% are highly signi®cant.

As can be seen, there are several highly signi®cant differ-

ences in the distribution of temperature and/or pH values for

the different macromolecular classes. For example, the distri-

bution of pH values in the BMCD for the ligand-binding

proteins (P.S.B) is signi®cantly different from those reported

for enzymes (P.S.E) at the 0.02% level. This contrasts with the

distribution of temperatures for these two classes, which do

not show a signi®cant difference. The immunoglobin-like

(P.S.I) proteins and enzymes show an opposite behavior,

where their distribution of temperatures is different at the

0.14% level of signi®cance while there is no signi®cant

difference in the distributions of their pH values.

Table 3
Conditions generated by screen-design program for enzymes.

P.S.E, 294 K

*Tris pH 7.9,
50.0% AS,
0.05 M *citrate

*Tris pH 7.5,
8.0% PEG 4000,
0.05 M *acetate

*acetate pH 5.2,
25.0% AS,
0.10 M NaCl

*citr* pH 5.3,
8.0% PEG 4000,
0.10 M NaCl

*acetate pH 5.2,
20.0% PEG 8000,
0.10 M NaCl

*phosphate pH 8.0,
8.0% PEG 4000,
0.10 M NaCl

*phosphate pH 6.8,
15.0% MPD,
0.05 M acetate

*acetate pH 5.2,
20.0% PEG 4000,
0.05 M NaCl

*phosphate pH 6.4,
12.0% PEG 8000,
0.10 M acetate

MES pH 5.4,
14.0% PEG 6000,
0.05 M NaCl

*citr* pH 4.9,
6.0% PEG 6000,
0.05 M NaCl

HEPES pH 7.6,
12.0% PEG 4000,
0.05 M NaCl

*acetate pH 4.8,
20.0% PEG 8000,
0.15 M NaCl

*acetate pH 4.4,
10.0% PEG 6000,
0.20 M Li2SO4

Tris pH 7.5,
20.0% PEG 4000,
0.10 M *citrate

*acetate pH 4.8,
32.0% PEG 8000,
0.05 M NaCl

*phosphate pH 7.2,
50.0% MPD,
0.35 M NaCl

MES pH 5.8,
30.0% AS,
0.20 M NaCl

*cacodylate pH 7.1,
12.0% PEG 4000,
0.10 M NaCl

HEPES pH 7.2,
65.0% AS,
0.05 M *acetate

*acetate pH 4.8,
8.0% PEG 4000,
0.15 M *acetate

*Tris pH 7.5,
12.0% PEG 4000,
0.35 M NaCl

MES pH 6.6,
16.0% PEG 8000,
0.05 M *acetate

*citr* pH 4.9,
25.0% AS,
0.10 M *acetate

P.S.E, 277 K

*Tris pH 8.3,
6.0% PEG 6000,
0.10 M KCl

*phosphate pH 6.8,
15.0% MPD,
0.05 M NaCl

*phosphate pH 6.8,
4.0% PEG 8000,
0.10 M *citrate

*acetate pH 5.2,
4.0% PEG 8000,
0.10 M KCl

*Tris pH 7.5,
35.0% AS,
0.10 M *acetate

*phosphate pH 7.6,
16.0% PEG 8000,
0.20 M *acetate

HEPES pH 7.2,
15.0% MPD,
0.05 M *citrate

*citr* pH 5.7,
50.0% AS,
0.05 M KCl

*citr* pH 5.7,
8.0% PEG 4000,
0.10 M *citrate

*citr* pH 4.9,
6.0% PEG 6000,
0.05 M *acetate

*citr* pH 5.7,
14.0% PEG 6000,
0.05 M NaCl

HEPES pH 8.4,
25.0% AS,
0.05 M *citrate



Table 2 shows other interesting differences: membrane-

associated proteins (P.M) are clearly outliers. Their distribu-

tion of reported temperatures is signi®cantly different, often

markedly so from that of almost every other major protein

class. Heme/porphyrin-containing protein (P.S.H) crystal-

lizations show a difference in their temperature distribution

compared with that of enzymes. DNA-binding (P.DNA) and

(small) ligand-binding (P.S.B) proteins are reported to crys-

tallize with signi®cant differences in the distribution of their

pH values (at the 0.01% level).

The results shown in Table 2, together with other similar

results for other comparisons (not shown), clearly provide

objective support for both the idea that there are patterns of

crystallization and the idea that a macromolecular classi®ca-

tion scheme, such as that described here, captures some of

those patterns. Unfortunately, however, these results do not

provide much guidance `at the bench' to someone trying to

crystallize a new macromolecule.

We therefore developed the software described above with

the goals of identifying probable crystallization conditions for

a given macromolecular class and guiding actual experiments

toward those conditions. A related goal was to facilitate the

capture of crystallization data in machine-readable form so

that failure data could be included in future versions of the

program.

Below are presented sample results of calculations using

this software. These are intended to illustrate the program and

the underlying differences in the BMCD data. They do not

necessarily represent generalized `screens' for the macro-

molecular classes reported. For example, the number of trials

shown here was reduced for economy of presentation; we

would strongly suggest a larger number of trial conditions in a

real experiment. (For example, a small experiment might

invoke 72±96 conditions at room temperature and 48 at

277 K.) Indeed, the whole reason for developing a program is

to enable individuals to tailor their crystallization screens to

the speci®cs of their particular problem.

Table 3 shows the results obtained with the screen-design

program for enzymes (P.S.E) using buffers, precipitating

agents and their ranges, and salts and their ranges as reported

in the BMCD. The actual choice of these values was facilitated

by the program, which presents summary data for the selected

class(es) in its display. The range for pH values was tailored to

each buffer, spanning a range of � 0.8 pH units on either side

of the buffer's pKa. Two temperature values were selected, 277

and 284 K (the binning range was�3 K). 1000 conditions were

generated.

The table shows the 24 conditions with the highest prob-

ability score for 294 K. (24 was arbitrarily chosen because it

represents a standard `Linbro' crystallization tray.) The scores

indicate that room temperature is preferred over cold (277 K)

because the latter list had to be truncated at 12 experiments in

order to terminate it at an estimated probability of success

comparable with the 294 K results. This factor of two appears

to propagate further; for example, a list of 48 conditions at

294 K terminates with approximately the same probability

score as a list of 24 experiments at 277 K.

This preference illustrates an issue that arises whenever one

bases a crystallization scheme on reported success rates ± one

cannot always readily separate human preferences from

molecular behavior. For example, the dearth of reported

crystallization successes at temperatures between 277 and

294 K almost certainly re¯ects human behavior. In this case,

these two temperatures are readily available in most labora-

tories, while other temperatures are not. The statistical bias

where signi®cantly more enzymes have been reported to

crystallize at room temperature than 277 K is more subtle. It is

not clear whether this represents real molecular behavior or

human reluctance to work in the cold.

Table 4 shows similar results for the heme-containing

proteins (P.S.H) under conditions similar to those shown for

the enzymes. Fewer conditions are shown because a series

more appropriate to heme-containing proteins is shown below.

These results show that the algorithm generates signi®cantly

different conditions for the two classes. For example, exam-

ination of the table shows that the reported pH range for

heme-containing proteins is considerably narrower than that

for enzymes.

The heme-containing protein results show an even stronger

bias towards room temperature (with all the caveats discussed

above) than do the enzymes. Indeed, the probability scores for

heme-containing proteins at 277 K were so low that there were

no experiments that correspond to those shown in Table 4; this

is why the table only shows results for 294 K. However, longer

lists (that delve lower in the probability scores) do pick up

some 277 K experiments for heme-containing proteins, but the

room-temperature conditions dominate. This differing distri-

bution of reported results was indicated by the t-test results

described above and this example shows how the program

translates that difference into suggested screening conditions.
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Table 4
Conditions generated by screen-design program for heme-containing proteins.

P.S.H, 294 K

*phosphate pH 6.8,
8.0% PEG 4000,
iron

*phosphate pH 6.8,
25.0% PEG 1000,
0.3 M ammonium
phosphate

Imidazole pH 6.6,
30.0% PEG 2000,
iron

*phosphate pH 6.8,
10.0% PEG 6000,
0.05 M *citrate

*phosphate pH 6.4,
24.0% PEG 4000,
iron

*phosphate pH 7.2,
20.0% PEG 2000,
iron

*phosphate pH 6.4,
30.0% PEG 1000,
0.005 M KCN

*phosphate pH 7.2,
20.0% PEG 8000,
0.3 M ammonium
phosphate

*phosphate pH 6.8,
20.0% PEG 8000,
0.020 M KCN

*phosphate pH 6.8,
18.0% PEG 6000,
0.3 M ammonium
phosphate

*phosphate pH 8.0,
16.0% PEG 4000,
iron

PIPES pH 6.4,
25.0% AS,
0.020 M KCN
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During the setup phase for the preceding example, it was

obvious that one of two additives was used in virtually every

reported successful crystallization of a heme-containing

protein; they were ammonium phosphate and iron (II) citrate.

They therefore dominated the `additive' variable because of

their statistical prevalence. However, the same displays also

showed that other additives were usually present, e.g. salts

such as KCN. This result shows the utility of the statistical

summaries presented by the software. Accordingly, an addi-

tional run was performed using two additives: the ®rst was a

general salt, as used above, with the same trial values used for

the enzymes, while the second additive was either ammonium

phosphate or iron (II) citrate. These results are shown in

Table 5 and clearly indicate how the program can be used to

target the search on known properties of a given class of

proteins. They are more appropriate for a heme-containing

protein, although here too the list has been truncated for

brevity. Signi®cantly more experiments should be generated in

a real crystallization attempt.

Table 6 shows typical results for the small ligand-binding

proteins (P.S.B). Recall that the statistical (t-test) results

suggested signi®cant differences in the distribution of reported

pH values for ligand-binding proteins and enzymes. This is

borne out in the data, as can be seen in Fig. 4, which shows

histograms of the top-scoring pH values suggested by the

program. Although the pH distributions as represented by the

histograms are similar, that of the ligand-binding proteins is

clearly shifted towards higher pH values, with more high-

scoring experiments at alkaline pH.

This shift is a clear illustration of what we are trying to

achieve. While the ligand-binding proteins and the enzymes do

not crystallize under radically different conditions, one can

increase the ef®ciency of a search by shifting the sampling

pattern of one's search; in this case, by shifting it to higher pH

values. Subtler shifts in other parameters of the crystallization

are also present.

These results also illustrate, sometimes by omission, the

dif®culties inherent in using a database grounded in the

published literature. For example, we have not been able to

include a consideration of the isoelectric point (pI) of the

protein at this stage. It is well known that the solubility of most

proteins is a minimum at their pI; it is therefore highly rele-

vant to the design of crystallization conditions. However,

publications describing preliminary crystallization results

rarely (if ever) report the pI. Similarly, they virtually never

report `failure' data, e.g. conditions that gave rise to precipi-

tates rather than crystals. Future versions of the program will

Table 5
Alternate conditions for heme-containing proteins.

PSHA, 294 K

*phosphate pH 7.2,
25.0% AS,
0.020 M KCN,
iron

*Tris* pH 8.7,
25.0% AS,
0.10 M *acetate,
ammonium
phosphate

*phosphate pH 7.6,
25.0% PEG 1000,
0.005 M KCN,
iron

*phosphate pH 8.0,
55.0% AS,
0.15 M *acetate,
iron

*acetate pH 4.0,
25.0% PEG 1000,
0.010 M KCN,
0.3 M ammonium
phosphate

*acetate pH 4.0,
10.0% PEG 6000,
0.020 M KCN,
0.3 M ammonium
phosphate

Imidazole pH 6.6,
25.0% AS,
0.010 M KCN,
ammonium
phosphate

*cacodylate pH 6.3,
30.0% PEG 2000,
0.10 M *acetate,
iron

*phosphate pH 6.4,
26.0% PEG 6000,
0.005 M KCN,
iron

Imidazole pH 7.0,
4.0% PEG 4000,
0.40 M NaCl,
0.3 M ammonium
phosphate

*phosphate pH 7.2,
30.0% PEG 6000,
0.020 M KCN,
ammonium
phosphate

*cacodylate pH 6.7,
35.0% AS,
0.10 M *acetate,
iron

Imidazole pH 7.0,
45.0% AS,
0.05 M *acetate,
iron

*phosphate pH 6.4,
10.0% PEG 6000,
0.35 M *acetate,
ammonium
phosphate

*phosphate pH 6.8,
26.0% PEG 6000,
0.020 M KCN,
iron

*phosphate pH 6.4,
20.0% PEG 2000,
0.15 M *citrate,
ammonium
phosphate

*phosphate pH 6.8,
20.0% PEG 4000,
0.05 M KCN,
ammonum
phosphate

*phosphate pH 8.0,
28.0% PEG 8000,
0.015 M KCN,
iron

*phosphate pH 8.0,
8.0% PEG 4000,
0.45 M *acetate,
iron

*phosphate pH 7.2,
20.0% PEG 4000,
0.15 M *citrate,
ammonium
phosphate

PIPES pH 6.0,
25.0% PEG 1000,
0.10 M *acetate,
iron

*phosphate pH 8.0,
12.0% PEG 8000,
0.20 M *acetate,
iron

*phosphate pH 7.6,
10.0% PEG 6000,
0.30 M *citrate,
iron

*phosphate pH 7.2,
20.0% PEG 4000,
0.20 M *acetate,
iron

Figure 4
Distribution of pH values generated by the program for three classes of
proteins, enzymes, heme- (porphyrin-) containing proteins and small
ligand-binding proteins.



include this information because we plan to gather our own

data by recrystallizing a representative set of proteins where

the relevant data will be gathered and recorded for this

purpose. In the interim, the results and programs described

here do use the data currently available in the BMCD to

provide guidance during the initial screening for crystal-

lization conditions.

Although there are limitations on the screen-design

program described here, such as number of parameters it

considers, we believe it provides useful information to crys-

tallographers attempting to crystallize complex macro-

molecules. Preliminary results indicate that the program is

capable of locating regions in a multi-dimensional space that

are more likely to produce diffractible crystals. Moreover, the

reasons for the program's conclusions are based on actual

relative frequencies of success for different combinations of

conditions as reported in the BMCD. The program's calcula-

tion of probability of success follows from a straightforward

application of Bayes' theorem. As new experimental data is

included, the probabilities will be calculated with increased

con®dence and the resulting screen designs should be even

better.
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Table 6
Conditions generated for small ligand-binding proteins.

P.S.B, 294 K

HEPES pH 7.6,
60.0% As,
0.20 M NaCl

*citr* pH 5.7,
6.0% PEG 6000,
0.01000 M CaCl2

*phosphate pH 7.2,
2.500% ethanol,
0.20 M *acetate

*Tris pH 9.1,
28.0% PEG 4000,
0.05 M NaCl

*citr* pH 5.3,
16.0% PEG 4000,
0.20 M NaCl

*acetate pH 5.6,
12.0% PEG 4000,
0.05 M NaCl

*acetate pH 5.6,
55.0% AS,
0.00250 M CaCl2

MES pH 5.4,
14.0% PEG 6000,
0.15 M NaCl

*citr* pH 4.9,
14.0% PEG 6000,
0.01000 M CaCl2

PIPES pH 7.2,
20.0% PEG 8000,
0.05 M NaCl

*Tris pH 8.3,
55.0% AS,
0.10 M *acetate

*acetate pH 5.6,
8.0% PEG 4000,
0.00500 M CaCl2

MES pH 5.8,
12.0% PEG 8000,
0.15 M NaCl

PIPES pH 7.2,
20.0% PEG 8000,
0.01000 M CaCl2

MES pH 5.8,
20.0% PEG 8000,
0.01000 M CaCl2

*cacodylate pH 5.5,
4.0% PEG 4000,
0.01000 M CaCl2

HEPES pH 7.2,
18.0% PEG 6000,
0.00500 M CaCl2

MES pH 6.6,
4.0% PEG 8000,
0.35 M NaCl

*phosphate pH 7.2,
15.0% MPD,
0.05 M NaCl

*cacodylate pH 6.7,
24.0% PEG 8000,
0.05 M *acetate

*Tris pH 7.9.,
8.0% PEG 4000,
0.25 M NaCl

HEPES pH 7.6,
25.0% MPD,
0.40 M NaCl

*acetate pH 4.8,
30.0% AS,
0.10 M *citrate

MES pH 5.4,
22.0% PEG 6000,
0.05 M *acetate

P.S.B, 277 K

Tris pH 8.7,
45.0% AS,
0.0001 M MnCl2

*phosphate pH 6.8,
14.0% PEG 6000,
0.05 M KCl

*citr* pH 5.3,
25.0% MPD,
0.0001 M MnCl2

*phosphate pH 8.0,
10.0% PEG 6000,
0.10 M NaCl

Imidazole pH 7.0,
5.000% ethanol,
0.05 M KCl

*phosphate pH 7.6,
45.0% AS,
0.0001 M MnCl2

*phosphate pH 7.6,
10.000% ethanol,
0.00500 M CaCl2

*cacodylate pH 5.5,
10.000% ethanol,
0.00500 M CaCl2

*citr* pH 5.3,
15.0% MPD,
0.00500 M CaCl2

*citr* pH 4.5,
5.000% ethanol,
0.00250 M CaCl2

*acetate pH 5.2,
5.0% MPD,
0.05 M *acetate

*cacodylate pH 6.7,
7.500% ethanol,
0.05 M *acetate


